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Sexually selected weapons are among the most exaggerated traits in nature.

Sexual selection theory frequently assumes a high cost of this exaggeration;

yet, those costs are rarely measured. We know very little about the energetic

resources required to maintain these traits at rest and the difference in energetic

costs for the largest individuals relative to the smallest individuals. Knowledge

in this area is crucial; resting metabolic rate can account for 30–40% of daily

energy expenditure in wild animals. Here, we capitalized on the phenomenon

of autotomy to take a unique look at weapon maintenance costs. Using

Leptoscelis tricolor (Hemiptera: Coreidae), we measured CO2 production rates

before and after a weapon was shed. Males in this insect species use enlarged

hind femora as weapons in male–male combat, and yet can shed them

readily, without regeneration, upon entrapment. We found that metabolic

rate decreased by an average of 23.5% in males after leg loss and by 7.9% in

females. Notably, larger males had less of a drop in metabolic rate per gram

of weapon lost. Our findings suggest that sexually selected weapons contrib-

ute to a large portion of resting metabolic rate in males, but these costs do not

scale in direct proportion to size; larger males can have larger weapons for a

reduced metabolic cost. These energetic maintenance costs may be integral

to the evolution of the allometries of sexually selected weapons, and yet

they remain largely unexplored.
1. Introduction
In many species, sexually selected weapons become disproportionately larger as

individuals scale up in size [1,2]. For example, the largest deer develop especially

large antlers for their body size, and the largest elephants develop especially large

tusks relative to smaller individuals [3,4]. Much attention has been paid to the

relative size of weapons; yet, we still know remarkably little about the energetic

resources required to maintain these traits at rest, and how these energetic costs

change for the largest individuals relative to the smallest individuals [5,6]. Such

costs could fundamentally shape or limit the exaggeration and diversification

of sexually selected weapons. Metabolic theory provides a general prediction

across animal taxa that larger organisms use less energy per gram of tissue

than smaller organisms at rest [7–9], yet the extent to which this pattern is true

for sexually selected traits has only begun to be tested.

Sexually selected traits provide some of the most extreme examples of traits

that increase in relative size with body size [1,4,10]. Traits that get dispro-

portionately larger (slope . 1) as individuals increase in size are said to scale

hypermetrically or with positive allometry [2,10–12]. Positive allometries in sexu-

ally selected traits are likely to be driven by size-dependent costs and benefits of

these traits [13–16]. For example, larger individuals may benefit more from
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Figure 1. (a) The hind legs of males are larger than those of females and are modified as weapons. Large males carry proportionally larger weapons than small
males ( photos: Geena Hill). (b) A scan of a hind leg from a large male (Image: Joshua Yarrow). Prior to this study, we dissected the tissue from the hind femora of a
sample of six individuals and used antigen staining techniques to visualize tissue structure (i.e. sarcomeres of striated muscle). To identify this as metabolically active
muscular tissue, we stained for an enzyme subunit critical in mitochondrial oxidative phosphorylation, COX IV [41]. Our phosphorescent staining (green) revealed
sarcomeres, a distinctive feature of metabolically active muscular tissue. (Online version in colour.)
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amplifying signals of high competitive ability [17–20]. Further-

more, high-quality individuals may be able to express or carry

proportionally larger sexual structures [21–23]. While the

absolute cost of a proportionally larger weapon may be high,

its marginal cost may be lower [24]. To examine the costs of

sexually selected traits, many studies focus on the costs of

sexual displays or contests [25–27]. Other studies focus on

the cost of growth, and such studies have sometimes revealed

growth costs manifesting as developmental trade-offs with

other traits [28–30]. In addition, some studies have measured

the energetic cost of routine behaviours, such as swimming

and running, with sexually selected traits [26,31,32]. However,

the costs of sexually selected traits are not limited to displays,

contests or routine behaviour and do not end with growth.

Sexually selected structures often contain metabolically active

tissue that can contribute significantly to whole-organism rest-

ing metabolic rate during adulthood, even when the trait is no

longer growing [26,32]. In fact, theory often implicitly assumes

that the relative resting maintenance costs of sexually selected

traits scale in direct proportion to size [33,34], which, metabolic

theory suggests, may not be the case for other energetically

expensive organs such as nervous system and muscle

[35–37]. Indeed, the relative energetic expenses incurred by

different organs may change with body size [38]. This effect

may come from allocating disproportionate materials and
energy to certain expensive tissues such as muscle or nervous

tissue within exaggerated traits. Measuring the resting ener-

getic maintenance costs for these structures may be crucial

for understanding their evolution and exaggeration. This

energetic perspective is likely to provide insight into why

steep allometric scaling of sexually selected traits can be so

common in nature.

Here, we examine the resting metabolic cost of maintaining

a sexual weapon in a sexually dimorphic insect, Leptoscelis
tricolor (Hemiptera: Coreidae). Males have enlarged hind

femora, which they use as weapons in combat against rivals

for mating opportunities [39,40]. The weapons scale positively

with body size and are composed of soft tissues surrounded by

a hardened cuticle. The steep scaling slope of weapon size

means that larger males dedicate a larger proportion of their

body mass to their weapons. Dissections of the hind femora

and antibody staining revealed evidence that the legs are

filled with metabolically active muscle fibres (figure 1).

Furthermore, L. tricolor can autotomize (drop) hind legs

that become entrapped (e.g. during a moult or by predators),

a feature common to many insects in this family [42]. For

these reasons, we realized that this species provides an unusual

opportunity to disentangle the relationship between relative

size of weapons and the metabolic expenses they incur.

We compared CO2 production before and after autotomy to
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infer changes in aerobic metabolic rates in response to leg

(weapon) loss among males that differ in relative leg size.

If weapons are costly to maintain, we predicted a drop in meta-

bolic rate after leg autotomy. In addition, if weapon energetic

costs scale with the size of the sexual weapon, we predicted

metabolic rates to drop in proportion to the mass of weapon

that is lost. We present four hypotheses, as follows. (i) Isome-

try—the metabolic cost of the hind leg scales in direct

proportion to its mass, in this case the mass of the hind leg is

directly indicative of its metabolic expense. This hypothesis is

often implicitly assumed by sexual selection theory [17,43].

(ii) Typical allometry—the metabolic cost of the hind leg

scales with a slope of 0.75, equivalent to the slope of metabolic

rate predicted by metabolic theory [44,45]. (iii) Cost minimiz-

ation—the metabolic cost of weapons is lower per gram of

tissue for larger individuals. This is consistent with the hypoth-

esis that there is strong selection for the largest males to

minimize the ongoing, resting energetic expense of their

giant weapons. (iv) Expensive signals—the metabolic cost of

weapons is higher per gram of tissue for larger individuals

(electronic supplementary material, figure S3). This suggests

that larger traits are disproportionately expensive to maintain

and may act as signals for high competitive ability [46].

Our primary goal was to compare CO2 production across

males after the loss of a sexually selected weapon. However,

we also compared males to a small sample of females for

added inference. For females that carry relatively smaller hind

legs, we expected a smaller drop in metabolic rate compared

to males after leg loss. This study allowed us to ask a critical

question underlying many theoretical predictions about the

scaling of sexually selected traits: do larger males pay a lower

relative energetic cost of maintaining a proportionally larger

sexual weapon?
2. Methods
(a) Collection
Leptoscelis tricolor were collected from Gamboa, Panama, trans-

ported to the laboratory in plastic containers with moist paper

towels, and held in outdoor cages for 24 h before measurements.

We collected males (mean body mass+ s.d.¼ 142.7+27.3 mg,

mean single hind leg mass¼ 9.16+2.99 mg, n ¼ 43) and females

(mean body mass+ s.d.¼ 162.6+31.8 mg, mean single hind leg

mass ¼ 3.39+0.480 mg, n ¼ 15). To minimize stress for these

liquid feeders, all insects were fed ad libitum with host plant inflor-

escences from the area in which they were collected. We recorded

body mass and transferred individual bugs to respirometry

chambers 15–30 min prior to measurement to allow them to

become accustomed to the chamber and laboratory environment.

(b) Respirometry
We used a flow-through respirometry system consisting of an air

pump, Omega flow meter, and Licor LI 6252 CO2 analyzer in differ-

ential mode with a resolution of approximately 0.2 ppm with

hardware and software time-averaging of 1 s. The system was cali-

brated and spanned using a certified gas containing 1010 ppm CO2

in N2. The zero span was reset each time the flow rate was changed,

and the system re-zeroed before and after each insect was measured.

Incurrent air was scrubbed of CO2 and moisture using Drierite and

Ascarite/Soda Lime columns prior to entering the animal chamber.

Airflow rates were between 50 and 180 ml min21. Lower flow rates

were used for smaller animals and higher flow rates for larger ani-

mals. Excurrent CO2 (ppm) was recorded at a sampling rate 15
samples per second, using Sable Systems EXPEDATA 1.7.3 software

version interfaced with a Sable Systems UI1 analogue-digital con-

verter for a period of 10–20 min to ensure capture of resting

metabolic rates (see below on assessment of resting metabolic rate).

Excurrent CO2 at rest ranged from 6 to 85 ppm, with a signal-to-

noise ratio of 10.37. CO2 emission rate was calculated by dividing

ppm CO2 by 1 million, multiplying by the air flow rate (in

ml min21) and then dividing by 60 min h21. To calculate the meta-

bolic rate in Watts, this value was divided by a standardized RQ

(assuming RQ¼ 1) and then multiplied by the conversion factor

21.1 joules per millilitre O2 [47].

We used 30 ml animal chambers made of airtight plastic

syringes. Each chamber was kept in a dark box with red

LED bulb during measurement. We recorded activity with a

Panasonic High definition HC-V10 camera. We later coded the

level of activity by visually interpreting activity level (leg, anten-

nae and body movement) every 3 s from these videos. Activity

was coded from a scale of 0 (no activity) to 4 (intense activity);

time periods where individuals exhibited no activity (scale ¼ 0)

were matched to areas of low and stable CO2 production to

determine our measure of resting metabolic rate.

For each individual, we first measured CO2 emission rates

before we removed the leg. Immediately after the whole body

metabolic rate was measured, we induced leg loss by holding

the right hind femur with reverse pressure forceps until the

insect made a stereotyped movement and detached its leg [42].

Twenty-four hours later, we again measured CO2 emission rates

for each individual. Care was taken to minimize stress on the

insects. In coreids, autotomy occurs at specialized break-points

and appears to heal quickly with little loss of haemolymph.

Indeed, in other arthropod species, autotomy is coupled with

rapid wound-healing; the immune response typically lasts for

just a few hours and autotomy does not appear to impair survival

[48–50]. We attempted to reduce stress by inducing leg loss of only

a single leg. Loss of a single hind leg occurs often in nature; on

average 12% of L. tricolor individuals in the wild are missing a

single hind leg [51].

We examined a possible short-term stress response of leg loss.

For a subset of males, we measured CO2 emission at two additional

time points after leg loss, 1 min and 1 h, and then followed with the

routine 24 h measurement. We found CO2 production increased

non-significantly 1 min after leg loss and decreased within 24 h

after leg loss (GLM: Walds x2 ¼ 3.14, d.f. ¼ 3,39, p ¼ 0.035, elec-

tronic supplementary material, figure S2); These findings are

consistent with previous findings that reveal a heightened meta-

bolic rate only for a few hours after autotomy [48,49]. Once all

metabolic measurements were completed, we induced autotomy

of the second hind leg to measure average wet hind leg mass.
(c) Statistical analysis
(i) Comparisons among males
To test our hypothesis that the metabolic rate required to maintain a

weapon scales in direct proportion to the size of the weapon, we

measured metabolic rates for each individual male before and

after leg loss. This allowed us to calculate the drop in mass due to

leg loss, and to determine how this drop in mass is related to the

drop in metabolic rate. We calculated mass-specific metabolic rate

by dividing the change in metabolic rate by the mass of the leg

lost. We also accounted for the mass of tissue lost by subtracting

leg mass from total body mass when calculating our mass-specific

metabolic rate after leg loss. We calculated drop or change in

mass-specific metabolic rate between treatments by subtracting

mass-specific metabolic rate measured before leg loss from mass-

specific metabolic rate after leg loss for each individual. To examine

the effect of treatment (leg loss) on log10 mass-specific metabolic

rate, we constructed a GLM, with log10 change in mass-specific

metabolic rate as the response variable and body mass as the

http://rspb.royalsocietypublishing.org/
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Figure 2. (a) Males (orange, n ¼ 43) exhibit positive allometries; larger males produced proportionally heavier weapons for their body size than do small males. In
comparison, females (grey, n ¼ 15) did not exhibit positive allometries in hind leg mass. (b) RMR for insects with all legs intact exhibited positive allometries in
males, while female RMR had no significant relationship with body mass. The mass of a single hind leg was used in all estimates of hind leg mass. All lines were
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predictor variable. This analysis allowed us to determine if larger

individuals pay a lower or higher energetic cost of maintaining a

proportionally larger weapon. All measurements were log10 trans-

formed to control for non-normality and unequal variances.

We tested the assumption of homogeneity of slopes using a GLM,

and we found this assumption fulfilled before we proceeded with

each analysis. All statistical analyses were conducted in the R

v. 0.99.893 statistical software (R Development Core Team 2016).

(ii) Comparisons between males and females
To examine the allometry of hind leg mass for males and females,

we used a general linear model (GLM), with log10 body mass and

sex as continuous and categorical explanatory variables respect-

ively, and the interaction between body mass and sex. Second, to

examine the allometry of resting metabolic rate for males and

females, a separate GLM was constructed with log10 body mass,

sex and their interaction as explanatory variables. In addition, to

examine the slope of log10 body mass to log10 leg mass in males

and females separately, we used ordinary least squares (OLS)

regression [52]. Similarly, OLS regression was used to examine

the slope of log10 body mass to log10 resting metabolic rate in

males and females. We compared slopes and intercepts of males

and females using a simple linear model and tested male and

female allometry against a slope of 1 (isometry).
3. Results
(a) Leg mass allometry
Steep allometries (hypermetric scaling) of weapon mass were

confirmed. Larger males had heavier hind legs for their body

size than did smaller males (figure 2a: y ¼ 1.53x 2 0.75,

OLS regression: R ¼ 0.64, p , 0.001, OLS against slope ¼ 1:

F1,41¼ 77.26, p , 0.001). The opposite was found in females,

where larger females had proportionally lighter hind legs

than did smaller females (figure 2a: y ¼ 0.54x 2 2.03, OLS

regression: R ¼ 0.67, p , 0.001, OLS against slope¼ 1: F1,13 ¼

29.18, p , 0.001). Body mass significantly predicted leg mass,

as revealed by a GLM with log10 body mass and sex as predictor

variables and log10 leg mass as a response variable (GLM: Wald

x2 ¼ 29.27, d.f. ¼ 1,54, p¼ 0.029). However, this scaling relation-

ship was different for males and for females, as shown by a
significant interaction between log10 leg mass and sex

(figure 1a: GLM: Wald x2 ¼ 11.58, d.f. ¼ 1,53, p ¼ 0.001).

(b) Metabolic rate allometry
We also found positive allometry of resting metabolic rate in

males. Males with greater body mass had higher metabolic

rates in proportion to their size compared to small males

(figure 2b: y ¼ 1.39x 2 1.93, OLS regression: R ¼ 0.38, p ,

0.001, OLS against slope ¼ 1: F1,41¼ 26.48, p , 0.001). Female

resting metabolic rate had no significant relationship with

body mass (figure 2b: y ¼ 0.55x 2 2.61, OLS regression: R ¼
0.04, p ¼ 0.24, OLS against slope ¼ 1: F1,13¼ 1.51, p ¼ 0.24).

We found no relationship between log10 body mass (GLM:

Wald x2 ¼ 2.62, d.f. ¼ 1, 54, p ¼ 0.20), sex (GLM: Wald x2 ¼

1.66, d.f. ¼ 1, 54, p¼ 0.11) or their interaction on resting

metabolic rate (figure 2b).

(c) Effects of leg loss on mass and metabolic rate
Males had a larger drop in mass than did females after leg

loss (GLM: Wald x2 ¼ 29.27, d.f. ¼ 1,54, p ¼ 0.029; figure 3a).

Males also had a larger drop in mass-specific metabolic rate

compared to females after leg loss, revealed by a significant

effect of sex on log10 change in metabolic rate (GLM: Wald

x2 ¼ 6.07, d.f. ¼ 1,54, p ¼ 0.017; figure 3b).

(d) Allometry of resting energetic cost of the weapon
For males, the amount of energy used to carry a proportionally

larger weapon did not scale in direct proportion to weapon

mass as indicated by the slope of the scaling relationship

between mass of the lost leg and change in metabolic rate

(figure 4, OLS regression: slope ¼ 0.36, p ¼ 0.036). Specifically,

for males we found a significant relationship between

log10 body mass (y ¼ 0.84x þ 0.86, OLS regression: R ¼ 0.13,

p , 0.001, OLS against slope ¼ 1: F1,41¼ 7.54, p , 0.01)

and log10 leg mass (figure 4: y ¼ 0.36x þ 0.89, OLS regression:

R ¼ 0.08, p , 0.001) and change in resting metabolic rate.

After leg loss, males no longer exhibited a positive allometry

in resting metabolic rate (y ¼ 0.59x 2 2.74, OLS regression: R ¼
0.03, p ¼ 0.13, OLS against slope ¼ 1: F1,41¼ 2.36, p ¼ 0.13).

http://rspb.royalsocietypublishing.org/
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However, comparisons between the largest (n ¼ 12) and

smallest (n ¼ 13) quartiles of males revealed that the largest

males had the largest drop in mass-specific resting metabolic

rate (RMR) after leg loss compared to the small males (GLM:

Walds x2 ¼ 4.29, d.f. ¼ 1, 23, p ¼ 0.03), but still not as large

as predicted based on the relatively larger size of the leg (see

electronic supplementary material, figure S1).

In comparison, for females the mass of the hind leg

showed a non-significant relationship with change in meta-

bolic rate (OLS regression slope ¼ 0.54, R , 0.01, p ¼ 0.36);

we found no significant relationship between log10 body

mass (y ¼ 20.35x 2 0.23, OLS regression: R , 0.01, p ¼ 0.37)
or log10 leg mass (y ¼ 0.54x 2 1.29, OLS regression: R , 0.01,

p ¼ 0.36) and change in resting metabolic rate in females.
4. Discussion
Sexually selected weapons often vary greatly in size, yet we

know little about how these traits vary in energy consumption

at rest. We have experimentally demonstrated that resting meta-

bolic rate declines in males after the loss of a hind leg weapon.

Furthermore, we find that the largest drop in metabolic rate

occurs in the largest males, which carry proportionally the

http://rspb.royalsocietypublishing.org/
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largest weapons. Our data indicate that large males, bearing

large weapons, pay higher overall energetic costs. Weapon

cost, however, does not scale 1 : 1 with weapon size as predicted

by isometry, but rather with a lower exponent. In contrast to

the expensive signals hypothesis (electronic supplementary

material, figure S3), our result suggests that the largest weapons

are not as energetically costly as their size might imply; the lar-

gest weapons found in large males are proportionately (but not

absolutely) cheaper to metabolically maintain. The inferred cost

of maintaining a weapon scales with a lower exponent than

typical allometry (lower than slope: 0.75: figure 4); this is con-

sistent with cost minimization, where males lessen the relative

costs of these structures as weapons get larger.

We also compared CO2 production in males relative to

females. In contrast to large males, large females exhibit pro-

portionally smaller hind legs and the loss of these structures

results in non-significant change in metabolic rate. This weak

negative allometry in the size of female hind legs is consistent

with a large number of previous studies of the scaling of natu-

rally selected traits in females [53]. We did not find a significant

relationship between metabolic rate and body size in females,

which suggests that different organs other than hind legs

might play a larger role in the resting energy budget of females

compared to males, an interesting area for future research.

Our results suggest that sexually selected traits can account

for a large proportion of resting metabolic rate in males, and

that larger males pay a lower proportional energetic cost for

maintaining these structures. It is, however, possible that

additional unmeasured size-dependent responses to leg loss

may contribute to our observed trends and further studies

are needed to investigate the ways in which tissue-specific

metabolic rates of weapons directly contribute to a male’s

total resting energy expenditure. One open question is whether

the proportionately smaller cost of large male weapons we

report here reflects the same processes that underlie metabolic

scaling more generally, or whether it reflects specifically the

effects of selection to minimize the cost of a large, sexually

selected trait. Investigating this question is an important next

step in this line of inquiry.

Maintaining metabolically active tissues can impose signifi-

cant energetic costs on organisms even during periods of

inactivity. For example, flying insects have higher resting meta-

bolic rates than do non-flying insects, probably because of the

upkeep of metabolically active flight muscles [54–56]. The rest-

ing metabolic costs of sexually selected muscles are much less

studied. Yet, the descriptive studies that do exist, and the

results we show here, suggest that sexually selected traits,

and the muscles needed to support them, incur substantial

maintenance costs (figure 3) [26,57]. In the sexually dimorphic

horned isopod, Deto echinata, males with proportionally larger

horns exhibited higher resting metabolic rates than do juveniles

or females [57]. In the fiddler crab, Uca pugilator, resting meta-

bolic rates of males were 17% higher than those of females of

equivalent mass [58], potentially because males had more

striated muscle in their enlarged weapons [59].

Multiple studies have focused on the energetic costs that

sexually selected traits might impose during routine behaviour

such as walking or swimming. Indeed, large and exaggerated

traits seem well poised to increase locomotory costs. Energetic

costs of sexually selected traits on locomotion have been exam-

ined in fiddler crabs [26,31], stag beetles [60,61] and swordtail

fish [32]. Not all results are as expected. In fiddler crabs for

example, males that had their major claw removed did not
consume less oxygen during rest or during sustainable loco-

motion; yet an increase in lactic acid was found in crabs

with claws during strenuous exercise which may suggest meta-

bolic costs can continue to accrue during rest after strenuous

exercise [31,62].

In addition to the cost of routine behaviours, several studies

have examined the costs of sexual displays or contests, for

example, the energetic cost of mate calling in birds [25,27],

frogs [63,64] and leafhoppers [65], and courtship in fish [32]

and spiders [66]. While some studies show that sexually

selected behaviours can carry high energetic costs over short

periods of time [67–69], others studies reveal that such beha-

viours are not energetically demanding [25,70]. However,

many of these behaviours require specialized muscles and

metabolically active tissue, the energetic costs of which con-

tinue to accrue over periods of inactivity. In addition, most

organisms spend much more time at rest than they do in

sexual displays or contests. Small maintenance costs incurred

during periods of inactivity can lead to large amounts of

energy expended over longer periods of time [26,32]. Indeed,

resting metabolic rate can account for 30–40% of daily

energy expenditure in free living animals [71–73]. Thus, the

daily energy expenditure of maintaining sexual traits might

impose a larger energetic burden on an organism than sexual

contests. In other words, the persistent costs of maintaining

the metabolic machinery required to perform high-energy

behaviours might contribute to a large energetic cost over

time [74,75] and ultimately shape the evolution of sexually

selected traits.

Energetic costs may be more pronounced for those traits

containing metabolically active tissue, yet many sexual traits

may not contain such tissue, for example, the air-filled

horns of the rhinoceros beetle, Trypoxylus dichotomus [76], the

mature antlers of elk, Cervus canadensis [77], the tusks of

tusked wasps, Synagris cornuta [78] or the elytral projections

of tortoise beetles, Acromis sparsa [79]. We would not expect

the expression of such traits to be limited by metabolic main-

tenance costs of the weapon itself [80–84]. By contrast,

L. tricolor males have muscular tissue within their weapons

which appear to contribute to resting metabolic rates. Indeed,

we found the flexor muscle (used in moving the tibia towards

the femur in a ‘squeezing’ motion typical of the motion used in

male–male combat in this species) is greatly enlarged in large

male weapons (electronic supplementary material, figure S3),

and the fibres in these muscles show a high occurrence of

enzymes involved in mitochondrial phosphorylation, indica-

tive of high metabolic activity (figure 1). However, species

with even greater muscle masses associated with their weap-

ons might pay larger metabolic costs [85]. One potential

explanation for why larger males pay a lower metabolic cost

for a larger trait is that the proportion of tissue with low meta-

bolic rates such as cuticle, trachea and connective tissue may

differ with overall body size, such that large individuals have

a higher proportion of these tissues. Indeed, a recent study

looking at 23 insect species across 5 orders suggests that differ-

ent body tissue often scales with unique slopes with body size

[86]; however, the role that energetics plays in shaping these

relationships is far less studied [87].

In addition to weapons, it is likely that other supportive

traits and musculature are expressed to allow L. tricolor
to carry and use these structures. We have not specifically

identified such traits yet; however, examples in other taxa

include increased investment in flight musculature to carry

http://rspb.royalsocietypublishing.org/
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weapons during flight in stag beetles [60], increased neck

musculature in Irish elk [88] and moose [89], or other

muscles to support the costs of locomotion, such as running

in fiddler crabs with large claws [26] or swimming in sword-

tail fish with elongated tails [32]. In our study, we did not

account for potential supportive traits that might increase

the cost of bearing sexually selected structures, and therefore

we probably underestimate the full metabolic cost of bearing

these weapons.
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5. Conclusion
The positive allometries so common to sexually selected traits

have long been a source of interest and puzzlement to evol-

utionary biologists, and most early studies focused on the

relative size of these traits, not on the proportion of the

energy budget these traits consume [1,10,90]. Via an experimen-

tal manipulation, we found that larger males pay a reduced

metabolic cost for the enlarged sexually selected weapon than

predicted from the size of the trait. In other words, the size of

a sexually selected weapon does not scale in direct proportion

to its metabolic maintenance cost. We also found that the ener-

getic maintenance costs are not as clear for the female

homologue, a much reduced version of the male weapon.

These findings inspire a more integrated perspective on the fac-

tors that shape and constrain weapon exaggeration based on the
cost of maintaining these structures and the specific energy

budgets that individual organisms experience.
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