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Intra- and interspecific communication is crucial to fitness via its
role in facilitating mating, territoriality and defence. Yet, the
evolution of animal communication systems is puzzling—how
do they originate and change over time? Studying stridulatory
morphology provides a tractable opportunity to deduce the
origin and diversification of a communication mechanism.
Stridulation occurs when two sclerotized structures rub
together to produce vibratory and acoustic (vibroacoustic)
signals, such as a cricket ‘chirp’. We investigated the evolution
of stridulatory mechanisms in the superfamily Coreoidea
(Hemiptera: Heteroptera), a group of insects known for
elaborate male fighting behaviours and enlarged hindlegs. We
surveyed a large sampling of taxa and used a phylogenomic
dataset to investigate the evolution of stridulatory
mechanisms. We identified four mechanisms, with at least five
evolutionary gains. One mechanism, occurring only in male
Harmostini (Rhopalidae), is described for the first time. Some
stridulatory mechanisms appear to be non-homoplastic
apomorphies within Rhopalidae, while others are homoplastic
or potentially homoplastic within Coreidae and Alydidae,
respectively. We detected no losses of these mechanisms once
evolved, suggesting they are adaptive. Our work sets the stage
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for further behavioural, evolutionary and ecological studies to better understand the context in which
these traits evolve and change.

1. Introduction

For many insects, the ability to communicate information effectively between senders and receivers is
critically important for survival and reproduction [1,2]. The forms and contexts of insect communication
are diverse, such as pheromone trails of foraging ants (e.g. [3]), bioluminescent flashing for mate
attraction in fireflies (e.g. [4,5]) and conspicuous warning colours in some weevils (e.g. [6]). Thus,
auditory, chemical, visual and even tactile forms of communication may be involved with critical
functions like mating, aggregating and defensive behaviours in insects. Why there is a diversity of
communication systems across animals, as well as the factors that promote their origin and
maintenance, has long been of interest to biologists and remains an active area of investigation (e.g. [7-9]).

The true bugs, or Heteroptera (Hemiptera), are no exception when it comes to expressing a diversity
of communication signals. There are many examples of species exhibiting bright, contrasting colour
patterns that have been shown or presumed to function as warning signals to would-be predators
(e.g. [10-12]). Many species also have one or more scent glands, some of which might be used for, e.g.
aggregation of conspecifics or to deter predators (e.g. [13,14]). Furthermore, some species can produce
sounds and/or vibrations through the air or substrate (vibroacoustic communication), examples of
which include percussion, tremulation or tymbal-like organs (e.g. [15,16]; reviewed in [17]). One other
form of vibroacoustic communication that occurs in the Heteroptera is stridulation (e.g. [18-21]; also
see [22]), which is also a common means of communication throughout invertebrates (e.g. [23-26]). It
involves two sclerotized, ‘roughened’ structures; the plectrum is a movable structure that rubs against
the stationary stridulitrum (or strigil) to produce both substrate (vibratory) and airborne (acoustic)
signals with broadband frequency [27,28] (terminology reviewed by [20]; also see [22] for definitions
followed in this study). In many Heteroptera, species lack a specialized auditory organ (.e.
tympanum) to receive airborne acoustic signals, and vibratory signals transmitted along substrates
have been considered the primary form of intraspecific communication in such species (reviewed in
[17]). However, stridulatory, substrate-borne vibratory signals or the airborne acoustic signals that
accompany them might also convey information when conspecifics are in close proximity and/or in
interspecific contexts [17]—intended or unintended, such as predator—prey interactions, as has been
demonstrated in other groups of arthropods (e.g. [29]). Since the importance of the airborne
component of stridulatory signals cannot be completely ruled out for these species, we use the term
‘vibroacoustic” to describe the bimodal nature of their signalling.

The prevalence of stridulation within Heteroptera is unknown for many families, but, based on
comparative morphological and taxonomic studies, the morphology of numerous species—particularly
in the Nepomorpha, Gerromorpha, Reduviidae, Miridae, Pentatomoidea and Lygaeoidea—suggests it
is common ([18-21,30,31]; also see [22]). Interestingly, the structures that are or are believed to be
involved in stridulation vary widely among a broad range of taxa within the Heteroptera. Schuh &
Weirauch [22] list 16 types of stridulatory mechanisms occurring in Heteroptera, which suggests a
likely minimum of 16 independent gains of these structures and an importance of stridulation in
many clades. However, phylogenetic comparative analyses investigating the evolution of stridulatory
mechanisms within heteropteran clades are lacking.

The leaf-footed bugs and allies (Coreoidea) are a globally distributed group of heteropterans, with
about 3000 extant species classified in five families [32]. Coreoidea are morphologically diverse,
include some agriculturally important species [33] and have been investigated in evolutionary ecology
and behavioural studies primarily centered on sexual selection (e.g. [34,35]). Stridulatory signals and/
or structures have been observed in both sexes for relatively few species within three families:
Alydidae, Coreidae and Rhopalidae. So far, different stridulatory mechanisms have been documented
among the families, with each having a specific mechanism (table 1, figure 1). In the Alydidae,
the mechanism involves the ridged or ‘filelike” anterior margin of the hemelytron and a patch of very
fine tubercles on the basal region of the metafemur; the mechanism has been observed in five genera
[36-38] (table 2). Within the Coreidae, acoustic signals were first observed in three species [39,41-43]
(table 2), but it remained unclear as to what structures might be responsible for them for nearly a
century. Stys [44] identified a stridulatory mechanism in three species (table 2); the plectrum consists
of a long series of ridges on the posterolateral edge of the prothoracic foramen, and the stridulitrum
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Figure 1. A generic diagram of an insect in Coreoidea (reproduced and modified from Schaefer & Pupedis [36] [their Fig. 17],
Kansas Entomological Society), showing the relative positions of the structures involved in each stridulatory mechanism
observed in this study. Cu, cubitus vein; Sc+R, subcosta + radius vein.

Table 1. Stridulatory mechanisms observed in families of Coreoidea prior to this study. Sc+R, subcosta + radius vein.

stridulatory
family plectrum stridulitrum mechanism
Alydidae basal posterior surface of costal margin of hemelytron hemelytron—
metafemur metafemur
Coreidae  posterolateral edge of  axillary scleites and/or hypocostal ~~ prothorax—
prothoraqc foramen Iamma of hemelytron hemelytron
” Rhopalldae ~ dorsal lateral edge of  ventral costal vein surface of rhetawmg ScHR—
abdomlnal terglte Ia metathoraqc wmg abdomen

*Plectrum reqmres antenor-postenor movement of abdomlnal tergites | and Il to contact stridulitrum.

involves the axillary sclerites and/or hypocostal lamina of the hemelytron. Interestingly, Stys [44] stated,
‘It is probable that...stridulation in Coreidae is not confined only to the 3 genera considered, because I
have ascertained similar structures in several other genera. Some genera, however, certainly lack the
stridulatory mechanism ...’, but he never mentions what other taxa were examined in the study. Since
Stys’ [44] publication, four additional species in the Coreidae have been reported to possess the same
mechanism [40,45] (table 2). Miller [46] also reported a second stridulatory mechanism in the
Coreidae, which involves the ventral surface of the clavus and the metathoracic wing (table 2). Lastly,
Jadera haematoloma (Herrich-Schaffer, 1847) is the only species in the Rhopalidae known to stridulate,
which involves the anterior-posterior movement of the basal abdominal tergites against the
stridulitrum on the ventral surface of the metathoracic wing’s subcosta + radius (Sc+R) vein [47].

As is evident above, there have been few comparative morphological studies on stridulatory
mechanisms within the Coreoidea (compared to studies with, e.g. Lygaeoidea, Nepomorpha and
Gerromorpha), with all studies based on exceptionally limited taxon samples. While the presence of
stridulatory mechanisms, in general, has likely evolved independently among the families of
Coreoidea, it remains to be seen whether specific mechanisms have evolved once or multiple times
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Table 2. Studies that have identified stridulatory mechanisms and/or sounds for taxa within the Coreoidea. Sc+R, subcosta +

radius vein.

Alydidae

 Alydidae
Alydidae

Alydidae

. A|yd|dae s

‘ Colreid»ae“
‘ (oreidéé
(oreidae

(oreidae

(oreidae
Coreidae

‘ Colreidae‘ ‘
(oreidae
(oreidae

Rhopalidae

subfamily

Alydinae

Aydinae

Alydinae

Alydinae

(oreinae

Coreinae
Coreinae
(Coreinae

(oreinae

Coreinae

Coreinae

Coreinae

Coreinae

Serinethinae

tribe

A|yd|nae

Acanthocerini
Acanthocorini
Coreini

Coreini

Gonocerini
Phyllomorphini

Prionotylini

_ schling, 1829

Alydus spp.

Burtinus Spp; ‘
Euthetus spp.

Megalotomus spp.

To[/lugspp e,

Futhochtha bglalléai‘or‘ ‘
(Fabricius, 1803)
‘Rhyfic‘dris terminalis
(Burmeister, 1835)
Centrocoris spiniger
(Fabricius, 1781)
Coreus marginatus
(Linnaeus, 1758)
Spathocera laticornis
Spathocera lobata (Herrich-‘
Schaffer, 1840)

‘C‘letomorpha raja Di‘sfanf,‘ o

1901
Phyllomorpha laciniata
(Villiers, 1789)
Prionotylus brevicornis
(Mulsant & Rey, 1852)

Jadera haematoloma

(Herrich-Schaffer, 1847)

stridulatory
mechanism identified

hemelytron—
metafemur
[34,35,37]

hemelytron—

metafemur [34,37]
hemelytron—
metafemur [34,37]
hemelytron—
metafemur
Héfnelytron—
metafemur
[34,35,37]

prothorax—

hemglytron [3‘9]‘

hemelytron—

metawing [40]
prothorax—

hemelytron [41]
prothorax—

hemelytron [39]

prothorax—

hemelytron [41]

prothorax—

hemelytron [39]
prothorax—
hemelytron [41]

prothorax—

hemelytron [44]
metawing Sc+R—

sound
observed

Ba3s3

38]

(36,43]

within families. Indeed, based on relationships obtained in previous phylogenetic studies (e.g. [48-54]),
some mechanisms may have evolved once and be synapomorphies that unite some clades (e.g. within the
Alydidae), while others may have evolved multiple times and so are homoplastic in other clades (e.g.
within the Coreidae). However, to understand the evolution of stridulatory mechanisms in the
Coreoidea, a rigorous comparative analysis is needed to expand on the limited taxon sampling of
prior morphological studies.

Given the limited taxon sampling of past comparative studies and the uncertainty of Stys’ [44] taxon
sampling, we investigated the presence of stridulatory mechanisms across a broad sample of Coreoidea.
Our taxon sampling strategy aimed to sample species in all five families, as well as across many
subfamilies, tribes and genera. We first conducted a morphological survey of stridulatory mechanisms
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known to occur in some species of Coreoidea, while also surveying for others not reported in coreoids [ 5 |

but otherwise known to occur in other species of Heteroptera. Based on the results of our comparative
morphological study, we then inferred a phylogeny of the superfamily (excluding the Stenocephalidae
[one genus, 30 species] and Hyocephalidae [two genera, three species] due to lack of suitable tissues)
using a large phylogenomic dataset. Our resulting phylogenetic hypotheses were used to study the
evolution of stridulatory mechanisms using ancestral state estimation (ASE).

2. Material and methods

2.1. Comparative morphology

We examined 139 species for the presence of stridulatory mechanisms across all five families of the
Coreoidea, as well as a species of the outgroup families Largidae and Pyrrhocoridae. We primarily
surveyed for the presence of the three stridulatory mechanisms listed in table 1, when suitable
material was available, and we also conducted a cursory survey for other stridulatory mechanisms
known to occur in other families of Heteroptera (see [22]). When possible, males and females of each
species were examined to evaluate if there is sexual dimorphism with respect to the presence of
stridulatory mechanisms.

For all species, external morphology was examined using a Nikon SMZ1500 stereoscope. To view the
posterolateral edge of the prothoracic foramen, we detached the head and pronotum from the remainder
of the body. Similarly, we spread or detached the hemelytra and metathoracic wings from the body for
examination. Prior to scanning electron microscopy (SEM), specimens of 29 species were coated with
gold/palladium with a Cressington 108 Auto sputter coater and a Cressington MTM 20 Thickness
controller. Structures were then imaged with a Tescan Vega 3xm SEM under high vacuum.

2.2. Molecular methods and sequence alignment

We retrieved published UCE sequence capture data for 205 taxa [50-53,55] (electronic supplementary
material, table S1). We generated new sequence data for an additional 16 taxa (electronic
supplementary material, table S1), which—compared to prior phylogenomic studies—included an
expanded sampling of species within the tribes Coreini, Gonocerini and Phyllomorphini. We also
included the monotypic Prionotylini, which is the first time this tribe has been included in a
phylogenetic analysis. Genome sequences of Halyomorpha halys (Stdl, 1855) and Oncopeltus fasciatus
(Dallas, 1852) were also downloaded from NCBI to extract UCE sequences from scaffolds. Of the 221
taxa sampled for UCE data, 114 were also included in the above comparative morphological survey.

For our 16 newly sampled taxa, we used freshly preserved samples in ethanol (EtOH), except for one
specimen pinned dried (electronic supplementary material, table S2). Genomic DNA was extracted either
from the whole body or any part of the body (e.g. thorax, abdomen and/or legs) to sample similar amounts
of tissue across samples. For the 15 samples preserved in EtOH, DNA was extracted using a Qiagen
DNeasy Blood and Tissue kit (DNeasy) with the following modifications to the manufacturer’s protocol:
tissue was incubated for 24 h in a solution of 180 pl Buffer ATL and 20 pl proteinase K, and DNA was
eluted twice with 50 pl Buffer AE. For the pinned sample, DNA was extracted with a DNeasy kit
coupled with a Qiagen QIAquick PCR purification kit (‘DNQIA’; [51,52,56]). The DNQIA protocol
initially followed the DNeasy protocol described above, but a QIAquick spin column was used, the AW
washes were replaced with Buffer PE, and the DNA was eluted twice with 50 pl Buffer EB.

We assessed DNA quality and quantity using 1% agarose gel electrophoresis and a Qubit 2.0
fluorometer, respectively. Where possible, samples were subsequently normalized (10-20 ng/ul), and
high molecular weight samples were fragmented into 200-1000 bp using a Covaris M220 Focused-
ultrasonicator (20-60s). For DNA extracted from the pinned specimen, DNA was repaired with a
PreCR Repair Mix kit, followed by a 3X SPRI clean-up.

Libraries were made using a modified KAPA Hyper Prep Kit protocol, with all steps using half
volume reactions. DNA samples were ligated to iTru universal adapter stubs and 8 bp dual indexes
[57]. Library amplification was done via initial denaturation at 98°C for 3 min; followed by 14-16
cycles of 98°C for 30s, 60°C for 30s and 72°C for 30s; and a final extension at 72°C for 5 min. The
quality and quantity of amplified libraries were then inspected by gel electrophoresis and Qubit,
respectively. Libraries were then combined into 1000 ng pools in equimolar amounts, dried at 60°C
and resuspended in 14 pl IDTE.
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Target enrichment was done using baits designed from two pentatomomorphan taxa [50,58] and a [ 6 |

hybridization mixture with 1/2 volume of baits for samples derived from fresh material and 1/4
volume of baits for samples derived from pinned material. Baits were hybridized with libraries at
65°C for 12 h followed by 62°C for 12h and then 60°C for 12 h, following Forthman et al’s [52]
touchdown capture protocol. Dynabeads M-280 Streptavidin beads were bound to bait-target hybrids,
washed four times at 60°C and resuspended in 30 pl IDTE. The post-capture PCR amplification mix
included 2.5 pl each of 5 uM iTru P5/P7 primers [57], and 14-18 cycles of post-capture amplification
were performed following manufacturer’s protocol, except an annealing temperature of 60°C and an
extension period of 45s were used. Post-amplification clean-up used Hydrophobic Sera-Mag
SpeedBeads Carboxyl Magnetic Beads, followed by two washes in 70% EtOH. Enriched library pools
were resuspended in 22 pl IDTE, quantified with Qubit and pooled into a single pool in equimolar
amounts for sequencing on a single Illumina HiSeq3000 lane (2 x 100) at the University of Florida’s
Interdisciplinary Center for Biotechnology Research.

Unless otherwise stated, default settings were used for all data processing steps described below.
Adapters were trimmed from demultiplexed, raw sequence reads with illumiprocessor v. 2.0 [59,60].
Duplicate reads were excluded using PRINSEQ-lite v. 0.20.4 [61], and the remaining reads were error-
corrected with QuorUM v. 1.1.0 [62]. Reads were then de novo assembled with SPAdes v. 3.13.0 using
the single-cell and auto coverage cut-off options [63]. PHYLUCE v. 1.7.0 [64] was used to identify and
extract UCE loci from assembled contigs following Forthman et al. [50-52]. We also used PHYLUCE to
align UCE baits to the H. halys and O. fasciatus genome sequences and to extract UCE loci with 500 bp
of flanking nucleotides. Loci were aligned individually using PHYLUCE's implementation of MAFFT
[65,66] and the following settings: generate incomplete matrices (--incomplete-matrix), no alignment
trimming (--no-trim) and allow nucleotide uncertainty (--ambiguous). Locus alignments were then
trimmed using trimAl v. 1.2 [67] and the heuristic automated] method. We selected locus alignments
with at least 50%, 65% and 80% of the total taxa (referred to as ‘50p’, ‘65p’ and ‘80p’ datasets,
respectively). We also subsampled each dataset for the 25% most parsimony-informative (25mi) loci. As
a result of our data filtering strategies, we generated six datasets for phylogenetic analyses. A summary
of newly generated read, contig and UCE data are given in electronic supplementary material, table S2,
and a summary of our alignments are presented in electronic supplementary material, table S3.

2.3. Phylogenetic inference

For each dataset, we concatenated locus alignments with PHYLUCE. Loci were initially treated as
individual partitions, and the best model of sequence evolution and partitioning scheme were
determined using IQ-Tree v. 2.1.2 [68] with the following settings: -m MF + MERGE [69], -rcluster 10
and -mrate ELGR (ie. I+G excluded from model selection since these parameters are not
independent of each other [70,71]). Five partitioned maximum-likelihood (ML) analyses [72] were then
performed in IQ-Tree for each dataset with the following settings: keep identical sequences (--keep-
identical), remove partitions violating stationarity and homogeneity assumptions (--symtest-remove-
bad; [73]), 1000 ultrafast bootstrap replicates further optimized by nearest neighbour interchange
based on bootstrap alignments (-B 1000 -bnni; [74]) and 1000 Shimodaira-Hasegawa-like approximate
likelihood ratio test replicates (-alrt 1000; [75]). The phylogeny with the best log-likelihood was then
selected for each dataset.

Because gene tree discordance can result in concatenation methods supporting an incorrect species
tree under high levels of incomplete lineage sorting, we also inferred species trees under the
multispecies coalescent (MSC) model [76-79]. For each locus alignment, IQ-Tree was used to select the
best-fit model of sequence evolution (-mrate E,I,G,R) and subsequently infer the gene tree (-m MFP)
with near-zero length branches collapsed (-czb). We then excluded gene trees whose loci violated
stationarity and homogeneity assumptions. The remaining optimal gene trees were then used to infer
the species tree using ASTRAL-III v5.7.7 [80-82]. Clade support was assessed using local posterior
probabilities [81].

We computed a 50% majority rule consensus tree based on all our ML and MSC estimated
phylogenies in PAUP* v4.0a169 [83] to quickly assess overall congruence among analyses.

2.4. Ancestral state estimation

Due to the limitations of our phylogenetic taxon sampling (i.e. few representatives of Rhopalidae), we
restricted ASE of stridulatory mechanisms to the Coreidae + Alydidae clade. Because only two
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stridulatory mechanisms were observed in this clade, we coded a single, multistate character with the -

following states: (0) mechanisms absent, (1) prothorax-hemelytron mechanism and (2) hemelytron—
metafemur mechanism. Prior to ASE, we first used IQ-Tree to estimate branch lengths in units of
substitutions on the MSC trees. We then pruned outgroup and rhopalid taxa from all ML and MSC
phylograms. We also pruned alydid and coreid taxa with missing stridulatory mechanism data with
two exceptions: 1) when one sex was observed to have a stridulatory mechanism but the other sex was
not available for observation, we retained the taxon and coded it as having that mechanism; and 2)
when taxa sampled in the comparative study were not included in the phylogeny but had a congener
with data or with partial data, we retained the congener and coded it as having the same state as the
corresponding taxon from the comparative study. We generated ultrametric trees using the chronos
function in the ape v. 5.6.1 package [84] with R v. 4.1.2 [85]. We calibrated the root node to a relative
age of 1. Four models (correlated, discrete, relaxed, clock) with three different lambda values (0.1, 1, 10)
were tested. We selected the ultrametric tree with the highest penalized log-likelihood value for ASE.
We performed ASE using marginal reconstruction with the rayDISC function in the R package
corHMM v. 2.7 [86]. We tested three models (equal rates, symmetric rates and all rates different) and
compared the Akaike Information Criterion corrected for small sample size (AICc) [87]. If AICc values
between models differed by greater than 2, we selected the model with the lowest AICc, which
corresponds to a better fitting model. When AICc values differed by <2, we chose the simplest model.

3. Results

3.1. Occurrence of stridulatory mechanisms across Coreoidea

Of the 139 species examined in our morphological survey across all five families of Coreoidea, 31 species (22
genera) in three families (six tribes and four subfamilies) had putative stridulatory mechanisms. We confirmed
the presence of three stridulatory mechanisms previously reported in some species of the Coreoidea (table 3),
and we did not find any evidence of sexual dimorphism in the presence of these mechanisms. The
hemelytron-metafemur mechanism was restricted to five species in four examined genera of the subfamily
Alydinae (Alydidae) (out of 16 species in 12 genera) (table 3). As previously described, the costal margin of
the hemelytron is modified into a stridulitrum (figure 2a—), with the basal region of the posterior
metafemoral surface possessing a fine patch of tubercles that forms the plectrum (figure 2d—).

The prothorax-hemelytron stridulatory mechanism was only found within the Coreidae and was
restricted to 22 species in 15 genera (five tribes) within the subfamily Coreinae (out of 90 species, 70
genera, 22 tribes) (table 3). For all these species, the plectrum was observed on the ventrolateral edge
of the prothoracic foramen (figure 3). Species of the Phyllomorphini exhibited a far more extensive
plectrum. In this tribe, the plectrum extended from near the prolegs to the paramedian part of the
posterior prothoracic margin where it then extended inwards for about a quarter of the length of the
pronotum (figure 3d). All other species of Coreidae examined lacked the prothoracic plectrum (figure 4).

In species with the prothoracic plectrum, the stridulitrum was observed on one or more axillary
sclerites of the hemelytron, often involving the hypocostal lamina (figure 5c—f). An additional
stridulitrum was observed in the Phyllomorphini, which involved the lateral margins at the base of
the scutellum (figure 5b) that was otherwise not present in all other taxa (figure 5a).

Our results did differ from published studies. We did not observe a prothorax-hemelytron
stridulatory mechanism in Euthochtha galeator (Fabricius, 1803) (Acanthocerini) (figure 4b). We also did
not confirm the ventral surface of the clavus and the metathoracic wing mechanism for Rhyticoris
Costa, 1863 (figure 6a).

We confirmed the presence of the metathoracic wing-abdomen mechanism in Jadera haematoloma
(figure 5b), and in another surveyed congener. In this genus, the stridulitrum is located on the Sc+R
vein of the metathoracic wing. The plectrum in Jadera Stal, 1862 involves an anterior-posterior
movement of the abdominal tergal plate (abdominal tergites I and II) (as experimentally shown by
Zych et al. [47]). We did not observe this mechanism in any other serinethine genera (i.e. Boisea
Kirkaldy, 1910 and Leptocoris Hahn, 1833) or in any species of Rhopalinae.

We additionally found the presence of a fourth stridulatory mechanism not previously documented
in the Coreoidea. Within the tribe Harmostini (Rhopalidae: Rhopalinae), a stridulitrum was observed on
the cubitus (Cu) vein of the metathoracic wing in species of Harmostes Burmeister, 1835 and Aufeius Stal,
1870 (table 3; Figures 1, 64, 6¢). In all species examined of this tribe, we also observed sexual dimorphism
in the presence of the stridulitrum; it was always present in males (figurer 64) and absent or drastically

~
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hcs

1 mm 500 pm

mfp

200 pm

Figure 2. Scanning electron microscopy (SEM) image of the hemelytron—metafemur stridulatory mechanism in the Alydidae. (a) Alydus
calcaratus, stridulitrum on hemelytron, male, dorsolateral view. (b) Close-up view of stridulitrum on hemelytron of Alydus calcaratus,
male, dorsolateral view. (c) Tollius curtulus, stridulitrum on hemelytron, female, lateral view. (d) Tollius curtulus, plectrum on metafemur,
male, posterior view. (e) Alydus calcaratus, plectrum on metafemur, male, posterior view. (f) Close-up view of plectrum on metafemur
of Tollius curtulus, male, posterior view. hcs, hemelytral costal stridulitrum; mfp, metafemoral plectrum.

reduced to a couple of barely elevated transverse ridges in females (table 3; figure 6e). While a distinct
plectrum was not obvious on the metanotum and/or abdomen (figure 7), it is possible a similar
mechanism reported by Zych et al. [47] for |. haematoloma occurs in these species.

No other stridulatory mechanisms were observed in our taxon sampling. Furthermore, we did not
find any evidence of stridulatory mechanisms occurring in the coreoid families Hyocephalidae and
Stenocephalidae (table 3).

3.2. Phylogeny of Coreoidea

Our analyses were congruent in many of the phylogenetic relationships they recovered (figure 8, electronic
supplementary material, figure S1), with most nodes moderately to highly supported (figure 8; see tree files
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vpp

200 pm

Figure 3. SEM image of the pronotal plectrum in the Coreidae, ventral view. (a) Centrocoris spiniger, male. (b) Cletomorpha nyasana,
male. (c) Coreus marginatus, male. (d) Pephricus paradoxus, female. (e) Prionotylus brevicornis, female. (f) Scolopocerus uhleri,
female. pfp, plectrum on ventrolateral foramen of prothorax; vpp, ventral prothoracic plectrum.

in Data Availability). However, the 50% majority rule consensus tree revealed much conflict regarding the
positions of the Colpurini, Cloresmini, Daladerini + Latimbini clade, Mictini and Acanthocephalini +
Acanthocerini + Anisoscelini + Chariesterini + Chelinideini + Hypselonotini + Merocorini + Placoscelini clade
(electronic supplementary material, figure S1), which was largely caused by the dubious position of
Elasmopoda alata (Westwood, 1842) across most analyses (see tree files in Data Availability); when looking
across all phylogenetic results, we consistently recovered (Daladerini+ Latimbini) as sister to
Cloresmini + (Colpurini + Mictini [with or without Elasmopoda alatal). Overall, the higher-level relationships
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100 um

500 pm

Figure 4. SEM image of the prothoracic ventrolateral foramen in the Coreidae, ventral view. (a) Catorhintha guttula, female. (b)
Euthochtha galeator, male. (c) Hydarella chiangdacensis, female. (d) Leptoglossus phyllopus, female. () Rhyticoris terminalis, female.
(F) Zicca taeniola, female. pf, prothoracic foramen.

we recovered are congruent with previous phylogenomic results [50-54], including the paraphyletic natures
of the Alydidae and Coreidae. However, our improved taxon sampling highlighted some new and notable
relationships. First, we found the Prionotylini to be sister to a species of Coreini, within a large clade
comprised of the Coreini, most Gonocerini and Phyllomorphini (figure 8, electronic supplementary
material, figure S1). Secondly, while we supported a polyphyletic Gonocerini as in previous
phylogenomic studies, we found a small clade including Gonocerus Berthold, 1827 and Plinachtus Stal,
1860 (genera not included in prior UCE studies) to form a sister group relationship with the
Homoeocerini (figure 8, electronic supplementary material, figure S1).
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200 pym 't,: i

Figure 5. SEM image of the scutellum (a,b) and hemelytral axillary sclerites (c—f) in the Coreidae. (a) Coreus marginatus, scutellum,
male, dorsal view. (b) Pephricus paradoxus, scutellum, female, dorsal view. (c) Centrocoris spiniger, axillary sclerites of hemelytron,
male, dorsolateral view. (d) Coreus marginatus, axillary sclerites of hemelytron, male, dorsolateral view. (e) Rhyticoris terminalis,
axillary sclerites of hemelytron, female, dorsolateral view. (f) Scolopocerus uhleri, axillary sclerites of hemelytron, male,
dorsolateral view. ha, hemelytral axillary sclerites; has, stridulitrum of hemelytral axillary sclerites; hls, stridulitrum of hemelytral
hypocostal lamina; s¢, scutellum; scs, scutellar stridulitrum.

3.3. The evolution of stridulatory mechanisms

Plotting the occurrence of stridulatory mechanisms within the Coreoidea on our phylogenetic hypothesis
(figure 9, Node A)—after inserting taxa from the comparative study that were not included in phylogenetic
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500 pm

500 pm

Figure 6. SEM image of the ventral surfaces of hemelytron (a) and metathoracic wings (b—f) in the Coreoidea. (a) Rhyticoris
terminalis, hemelytron, female. (b) Jadera haematoloma, close-up of subcosta+radius and cubitus on metathoracic wing, male
(reproduced and modified from Zych et al. [47] [their Fig. 4], Entomological Society of America). (c) Euthochtha galeator,
proximal area of metathoracic wing, male. (d) Harmostes serratus, proximal area of metathoracic wing, male. (e) Harmostes
serratus, proximal area of metathoracic wing, female. (f) Dulichius trispinosus, close-up of subcosta + radius and cubitus on
metathoracic wing, male. d, clavus; co, corium; Cu, cubitus; Cu-s, cubitus stridulitrum; PCu, postcubitus; Sc+R, subcosta +
radius; Sc+R-s, subcosta + radius stridulitrum; 1A, first anal vein; 2A, second anal vein.

analysis based on our current understanding of coreoid phylogeny and taxonomy—shows that two
mechanisms were only found in the Rhopalidae (Node B), while the ‘Alydidae’ (Node C) and
‘Coreidae’ (Node E) each had their own distinctive mechanism. Within the Rhopalidae, we found the
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mtn
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Figure 7. SEM image of the metathorax and abdomen in the Rhopalidae, dorsal view. (a) Harmostes serratus, male. (b) Harmostes
serratus, female. at 1+2, abdominal tergites 1 and 2; mtn, metanotum; mwas, metathoracic wing attachment site.

metawing Cu-thorax/abdomen mechanism to be a likely synapomorphy of the rhopalid tribe Harmostini.
We also found the metawing Sc+R-abdomen mechanism to be autapomorphic for the rhopalid genus
Jadera. The hemelytron—-metafemur stridulatory mechanism within the Alydinae (Node D) is primarily
found in a single clade of three genera; the mechanism was also observed in Tollius Stal, 1870, but the
phylogenetic position of this genus remains uncertain, and thus, whether this mechanism is a potential
non-homoplastic synapomorphy remains unknown. Within the ‘Coreidae’, the prothorax-hemelytron
mechanism was observed in two clades; the majority of coreid species with this mechanism formed a
large clade (Clade F), with only Scolopocerus Uhler, 1875 forming a separate clade (Clade G).

Despite some topological incongruences across our phylogenetic hypotheses, ASE analyses of
stridulatory mechanisms within the Alydidae and Coreidae were congruent (figure 10, electronic
supplementary material, figure S2-512), based on the best fitting equal rates model. The common
ancestors of the Coreidae + Alydidae, ‘Alydidae’ and ‘Coreidae’ did not possess the prothorax—
hemelytron or the hemelytron-metafemur stridulatory mechanisms. The presence of stridulatory
mechanisms, in general, was estimated to have evolved independently at least three times in the
Alydidae + Coreidae clade, and, based on our results, these mechanisms have not been lost in
descendant branches. The common ancestor of Burtinus Stal, 1860 and Alydus Fabricius, 1803 was
estimated to possess the hemelytron—-metafemur mechanism. Our results also supported the presence
of the prothorax-hemelytron mechanism in the last common ancestor of the large Coreini + Gonocerini
(part) + Phyllomorphini + Prionotylini clade. This same mechanism also occurred in Scolopocerus but
was not found in the common ancestor of Scolopocerus + Catorhintha.

4. Discussion

Communication is essential to fitness in many organisms, and the variety of modalities used to
communicate is staggering across the animal kingdom. Evolutionary studies of animal communication
often focus on signal variation within species and closely related species, but the evolutionary origins
and diversification of communication mechanisms—as well as why some lineages evolve a given
mechanism but not others—remain puzzling to biologists [88]. Examining stridulatory morphology
provides a tractable opportunity to trace the origin and diversification of one kind of communication
mechanism. We observed four distinct stridulatory mechanisms within the Coreoidea, with at least
five evolutionary gains and no losses of stridulatory mechanisms—suggesting selection to retain
stridulatory structures after they evolve.

4.1. An updated understanding of the distribution of stridulatory mechanisms in Coreoidea

Our understanding of the presence and diversity of stridulatory mechanisms within the Coreoidea has
been limited and hindered by the relatively small taxon sampling of past comparative morphological
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likelihood ratio test (sh-alrt) support; nodes without circles have 100% support (see Data Availability for tree with all terminals
and sh-alrt and ultrafast bootstrap values visible). Dorsal habitus images of select representatives (not to scale) are given to
show a range of diversity within the Coreoidea (terminal taxa with images bolded and have corresponding numbers associated
with images).

studies. In turn, this has impeded the ability to investigate the evolution of these mechanisms in a
phylogenetic framework and stimulate additional behavioural and bioacoustic/biotremology research
in the superfamily. Here, by greatly expanding our taxonomic sampling for investigating the presence
or absence of stridulatory mechanisms and placing this in a phylogenetic framework, we provide
fertile ground for studies of the selective factors that promote the origin and maintenance of stridulation.

Our broad comparative approach also allowed us to re-evaluate earlier studies on putative
stridulatory mechanisms in Coreoidea. By contrast to Miller [46], we did not find evidence of
stridulatory mechanisms in species of Rhyticoris. Schaefer [40] evaluated the mechanism described by
Miller in Rhyticoris and other genera, determined that Miller’s ‘plectrum’ was an axillary spur on the
metathoracic wing and concluded that the axillary spur likely functions as a wing-coupling device
rather than as a sound-producing structure. We also do not support Schaefer’s [40] conclusion that
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Figure 10. Ancestral state estimates (ASE) of two stridulatory mechanisms observed in the Alydidae and Coreoidea based on the 50p
ML ultrametric tree. Taxa with missing data are pruned from the tree for analysis. Taxa not incuded in the phylogenetic study are also
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Euthochtha galeator possesses the pronotum-hemelytron mechanism described by Stys [44] after our
examination of several specimens of this species did not reveal any stridulatory mechanisms. It may
be that Schaefer used misidentified material for this taxon.

We also note that the Cu vein of the metathoracic wing might appear to be a stridulatory structure
in some species of Alydidae and Pseudophloeinae. Basally, this vein appears rugose, weakly
sclerotized (at most), and without prominent transverse ridges (e.g. figure 6f), unlike what is
observed in the rhopalids (e.g. figure 6b and d). Thus, we concluded that species of Alydidae and
Pseudophloeinae do not possess a stridulatory mechanism involving the metathoracic wing veins
and the thorax and/or abdomen.
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4.2. Function of stridulatory mechanisms

The presence of structures that resemble a stridulatory mechanism does not confirm vibroacoustic signal
production via stridulation. Indeed, Zuk et al. [89] elegantly showed how quickly stridulation can be lost
in the field cricket, Teleogryllus oceanicus (Le Guillou, 1841) (Orthoptera: Gryllidae). Hawaiian
populations of T. oceanicus have encountered strong natural selection against stridulation due to an
introduced parasitoid fly that uses stridulatory signals to locate its host. While these crickets still have
structures that resemble a plectrum and stridulitrum, the architecture evolved rapid modifications that
rendered them silent [89] (although, some populations have recently evolved a new song via further
modifications to the stridulatory structures [90]). Our study focused only on the presence (or absence)
of stridulatory structures and their evolution within in the Coreoidea; we do not yet know the extent
to which the structures documented correspond to signal production for many species.

Within the Coreoidea, high-frequency stridulatory signals have been confirmed using loss-of-function
manipulations for only |. haematoloma, with low-frequency signals associated with abdominal movement
near the thorax [47]. Based on oscillograms and spectrograms of vibroacoustic signals, Alydus calcaratus
(Linnaeus, 1758), Coreus marginatus (Linnaeus, 1758) and Enoplops scapha (Fabricius, 1794) also produce
low-frequency signals from tymbal-like organs on abdominal tergites I and II and high-frequency
signals from stridulatory mechanisms [17,91,92]. Acoustic signals have also been reported from several
other coreoid species that possess stridulatory mechanisms: Centrocoris spiniger (Fabricius, 1781),
Centrocoris wvariegatus Kolenati, 1845, Phyllomorpha laciniata (Villiers, 1789), Spathocera laticornis
(Schilling, 1829), Pephricus paradoxus (Sparrman, 1777) and Tongorma latreillii (Guérin-Méneville, 1839)
([39,41-43]; M. Forthman, pers. obs.); given that evidence of acoustic signals does not confirm it is
produced from stridulatory structures, these species require further experimental testing (similar to the
approach in Zych et al. [47]) to determine the structures (i.e. stridulatory or tymbal-like) responsible
for the observed sounds.

Stridulatory signals in the Heteroptera have been associated with reproductive behaviours (e.g.
Corixidae [93,94], Reduviidae [95] and Miridae [31]) and defensive behaviours (e.g. Reduviidae [95]).
However, in the Coreoidea, the social contexts in which stridulatory signals are produced and
whether ‘songs’ are sexually dimorphic—particularly since most species examined have a mechanism
in both sexes—have not been thoroughly investigated. Zych et al. [47] studied stridulation in males
and females of |. haematoloma and found that individuals would stridulate when they physically
encountered a conspecific of either sex, but these signals were not produced when physical contact
was made by other arthropods. Schaefer & Pupedis [36] suggested that stridulation in the Alydidae
may be associated with pre-mating isolation in aggregations of multiple species, but this has yet to be
tested. Shestakov [96] concluded that vibratory signals from C. marginatus and S. laticornis appear to
be used in courtship and aggregation, respectively, but it is unclear whether these originated from the
prothorax-hemelytron stridulatory mechanism or some non-stridulatory behaviour. Thus, based on
our survey of the literature, almost all of the coreoid taxa we found to possess stridulatory
mechanisms require further bioacoustic/biotremology study to confirm both the functionality of these
structures and their role in social interactions.

Although our survey of stridulatory mechanisms revealed that they are often present in both sexes,
genera within the rhopalid tribe Harmostini exhibited sexual dimorphism with respect to the presence of
stridulatory mechanisms. The males of these species possess a well-developed stridulitrum on the
metathoracic wing’s Cu vein, but the stridulitrum is absent in females. If males do produce
stridulatory signals, then they may be involved in pre-mating and mating behaviours. For taxa in
which both sexes had stridulatory mechanisms, we were unable to investigate whether there is sexual
dimorphism in the fine-scale morphology of the structures due to the limited availability of specimens
that could be observed with an SEM. One study did not observe any apparent sexual dimorphism in
the Alydidae [36]. However, if sexual differences in signal production are observed, more careful
examination of the fine-scale morphology using a larger sampling of each sex may be justified.

4.3. Evolution of stridulatory mechanisms

A few phylogenetic comparative studies on the evolution of stridulatory mechanisms have been
conducted in other groups of arthropods, including ants (Hymenoptera: Formicidae) [97] and crickets,
katydids, and grasshoppers (Orthoptera) [98]. As in the Coreoidea, each of these groups include more
than one type of stridulatory mechanism among species, which involves a diversity of body regions
or variation in the placement of structures on the same body regions. Similar to our study of the
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Coreoidea, there is also evidence that some stridulatory mechanisms evolved multiple times within the E

Formicidae and Orthoptera, while others appear to be lineage-specific and evolved once [97,98].
Stridulatory mechanisms have also been secondarily lost in each of these groups, although in
Orthoptera, this has been associated with the loss of wings in some taxa or the evolution of a
different mechanism in others [97,98]. By contrast, we did not observe secondary losses of stridulatory
mechanisms in the Coreoidea, suggesting continued selection for these structures.

Although our data suggest continued selection to retain stridulatory mechanisms, why stridulatory
mechanisms have evolved in five clades within the superfamily while the majority of other coreoid
taxa lack such mechanisms remains unknown. In discussing several non-exclusive hypotheses below,
we considered the vibratory and acoustics aspects of stridulatory structures. First, stridulatory
mechanisms may have evolved due to selection on vibratory signalling repertoires. Several species of
the Coreoidea with and without stridulatory mechanisms have been documented to produce low
frequency vibrations, such as those from the abdominal tymbal-like organs (e.g. [17,39,41-
43,47,91,92])—which is a relatively widespread phenomenon in the Heteroptera [17,91,92]. These low
frequency signals are used in, for example, mate location and aggregation of conspecifics in other
Heteroptera [17]. Selection pressures may have promoted the evolution of a novel mechanism to
produce vibrations with a broader frequency range than those generated by tremulation or tymbal-
like organs. Broadening the frequency range could enhance species- and sex-specific signals, with high
frequency components possibly involved in species recognition when individuals are in close
proximity given the higher attenuation of these signals makes them less relevant for long-distance
communication through plant substrate [17,99,100]. Furthermore, in the context of multicomponent
(acousto-)vibratory signalling, the evolution of another signalling mode may also be promoted if it
expands the potential information content of the emitted signals in a combined display.

A second hypothesis is that stridulation in Coreoidea may have evolved to enhance or modify other
means of communication. For example, coreoids—like many other heteropterans—may use chemical
signals to facilitate aggregations of individuals, mating, or defence. Stridulation may enhance
information conveyed by chemicals, similar to multimodal signalling in some ant species [101].
Additionally, stridulation may also give species the ability to shift between communication modalities
(e.g. between visual and vibroacoustic signals) when a given environment impairs the efficacy of one
of the signals, as has been suggested in some spiders [102].

Third, stridulatory mechanisms may have evolved in response to predation and parasitic pressures.
Aside from invertebrate predators and parasitoids, coreoids are likely predated on by vertebrate species,
including birds, mammals and reptiles. Some coreoid species produce sounds that can be detected by
humans when disturbed ([36,38,42,43,45]; M. Forthman, pers. obs, 2017-2022) and probably other
vertebrate animals, and these acoustic signals likely originate from stridulation. Thus, stridulatory
mechanisms may have arisen to produce acoustic warning signals to predators and vibratory signals
to warn conspecifics of predatory threats.

Lastly, the evolutionary gain of stridulatory mechanisms in few coreoid clades may simply be because
the mutations associated with their development—which would also require the presence of associated
stridulatory behaviours—have not arisen in other clades. It will be exciting to examine the behavioural
ecology of the coreoid species with and without stridulation in the future to better understand the
contexts in which stridulation evolves.

4.4, Stridulatory mechanisms as putative synapomorphies and phylogenetic placement of new
taxa

Our results suggest the presence of specific stridulatory mechanisms could be useful in diagnosing clades
within the Coreoidea. Two of these mechanisms appear to be synapomorphies for taxa within the
Rhopalidae: the metawing Cu-thorax/abdomen mechanism for the tribe Harmostini and the
metawing Sc+R-abdomen mechanism for the genus Jadera. The hemelytron-metafemur mechanism
observed in the Alydidae may also diagnose a single clade of all genera possessing it, but this will
require further phylogenetic testing when species of Tollius and Euthetus Dallas, 1852 are available for
sampling. The prothorax-hemelytron mechanism may also be used as a diagnostic character within
the Coreidae, despite evidence it has evolved independently twice, once in the Coreini+ Gonocerini
(part) + Phyllomorphini + Prionotylini clade and another in a genus of Hypselonotini (.e.
Scolopocerus). However, additional morphological studies of other character systems will be needed to
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identify additional traits that would diagnose each clade in conjunction with the prothorax-hemelytron

mechanism.

The presence of the prothorax-hemelytron mechanism may also be informative in future changes to
coreoid classification. The non-monophyly of Gonocerini has been supported in recent phylogenomic
studies [51], with species of Cletoliturus Brailovsky, 2011, Cletomorpha Mayr, 1866 and Cletus Stal,
1860 forming a close relationship with the Coreini and Phyllomorphini. As mentioned above, our
study recovered this large clade (including Prionotylini), but we also recovered another clade of
Gonocerini (including Gonocerus and Plinachtus) that was more closely related to the Homoeocerini—
both of which lack stridulatory mechanisms. Thus, our phylogenetic results, ASE analyses and
morphological survey suggest the composition of Gonocerini may need to be revised.

5. Conclusion

Our study identified four stridulatory mechanisms within the Coreoidea, which evolved independently
at least five times. While stridulatory signal production is likely involved in intraspecific social
interactions (e.g. aggregation and mating), this has yet to be experimentally investigated for the vast
majority of coreoid species. In fact, while vibroacoustic signals have been documented for several
coreoid species, the origins of these remain unknown for most (i.e. stridulatory versus non-
stridulatory). One stridulatory mechanism is described in the superfamily for the first time (metawing
Cu-thorax/abdomen mechanism), and sexual dimorphism in the presence of this mechanism suggests
the use of stridulation may also differ for taxa in the Harmostini relative to other coreoid species.
Given these gaps in knowledge, further behavioural, bioacoustic/biotremology and natural history
studies in taxa with and without stridulatory mechanisms will expand our knowledge on the
functionality and communicative purpose of stridulatory mechanisms in Coreoidea. Addressing these
gaps in knowledge will also facilitate hypothesis testing regarding the evolutionary origins and
maintenance of stridulatory communication and whether there is a reduction in other forms of
communication when stridulation is present. We hope that this study provides a foundation from
which future work can link form to function, documenting signals, their variability within and across
species, and ultimately the factors that select for the gains and modifications of stridulation in the
superfamily Coreoidea.

Data accessibility. Sequence read files of newly generated data are available on NCBI's Sequence Read Archive under
BioProject PRJNAS878845. Alignments, gene trees and concatenation and species trees are available from FigShare
under the project titled ‘Evolution of stridulatory mechanisms: vibroacoustic communication may be common in
leaf-footed bugs and allies (Heteroptera: Coreoidea)’ (https://figshare.com/ projects/Evolution of stridulatory
mechanisms_vibroacoustic_communication_may_be_common_in_leaf-footed_bugs_and _allies Heteroptera_Coreoidea
/148711) [103].
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